Виды цепей питания, их примеры в природе, трофические уровни животных

Описание процесса

Механизм возникновения явления несложен. Но для его понимания важно знать, что в атмосфере содержатся газы двух типов:

  • двухатомные (азот, кислород, водород и прочие);
  • многоатомные.

Последние и называются парниковыми.

К ним относятся водяные пары, углекислый газ, метан, озон и некоторые другие.

Теперь кратко описать суть парникового эффекта можно следующей схемой:

  • Земля, нагретая солнечная лучами, испускает в атмосферу тепловое излучение, которое частично поглощается присутствующими там молекулами газов. В итоге атмосфера, насыщенная парниковыми газами, играет роль теплоизолятора.
  • Но поскольку помимо парниковых, в оболочке планеты присутствуют и двухатомные газы, прозрачные для инфракрасного излучения, частично оно проникает в космос.
  • Из-за неоднозначности процесса возникает необходимость в количественном определении парникового эффекта.

    Учёные проводят такие расчёты путём вычисления разницы между средней приповерхностной температурой атмосферы и светимостью планеты — параметром, также называемым эффективной температурой и характеризующим мощность излучения.

    Полученные данные складываются в статистику, благодаря чему можно отследить усиление эффекта или, наоборот, его ослабевание. Причём поскольку температуры атмосферы и светимости можно вычислить для различных небесных тел, аналогичные данные можно получить и для других планет.

    Для некоторых других планет и спутников характерен антипарниковый эффект — явление, при котором атмосфера хорошо пропускает и ультрафиолет, и инфракрасное излучение. Такой процесс происходит на поверхности спутника Титан и карликовой планеты Плутон. Локально он может происходить и на Земле.

    Одним из ярких примеров такой вулканической зимы стал 1816 год, когда извержение Тамбора годом ранее лишило Европу лета, весь сезон сопровождался морозами и выпадением снега.

    2 Трофическая структура экосистемы

    В результате последовательности превращений энергии в пищевых цепях каждое сообщество живых организмов в экосистеме приобретает определенную трофическую структуру. Трофическая структура сообщества отражает соотношение между продуцентами, консументами (отдельно первого, второго и т.д. порядков) и редуцентами, выраженное или количеством особей живых организмов, или их биомассой, или заключенной в них энергией, рассчитанными на единицу площади в единицу времени.

    Органическое вещество, производимое автотрофами, называетсяпервичной продукцией. Скорость накопления энергии первичными продуцентами называетсяваловой первичной продуктивностью, а скорость накопления органических веществ –чистой первичной продуктивностью.

    При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называетсявторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется.

    Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше 6. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции.

    Средняя эффективность переноса энергии от растения к животному составляет около 10 %, а от животного к животному – 20 %. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.

    Такая последовательность и соподчиненность связанных в форме трофических уровней групп организмов представляет собой поток вещества и энергии в экосистеме, основу ее организации.

    Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспобленных к условиям данной экосистемы

    По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).

    1.3 Типы пищевых цепей

    Существует 2 основных типа трофических цепей — пастбищные и детритные.

    В пастбищной трофической цепи (цепь выедания) основу составляют автотрофные организмы, затем идут потребляющие их растительноядные животные (например, зоопланктон, питающийся фитопланктоном), потом хищники (консументы) 1-го порядка (например, рыбы, потребляющие зоопланктон)

    В детритных трофических цепях (цепи разложения), наиболее распространенных в лесах, большая часть продукции растений не потребляется непосредственно растительноядными животными, а отмирает, подвергаясь затем разложению сапротрофными организмами и минерализации.

    Таким образом, детритные трофические цепи начинаются от детрита, идут к микроорганизмам, которые им питаются, а затем к детритофагам и к их потребителям — хищникам. В водных экосистемах (особенно в эвтрофных водоемах и на больших глубинах океана) часть продукции растений и животных также поступает в детритные трофические цепи.

    Рисунок 1.2. Поток энергии через пастбищную пищевую цепь. Все цифры даны в кДж/м2·год.

    В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуяпищевые сети.

    Рисунок 2. Пример пищевой сети

    Пищевые сети служат основой для построенияэкологических пирамид. Эту графическую модель разработал в 1927 г. американский зоолог Чарльз Элтон. Основанием пирамиды служит первый трофический уровень — уровень продуцентов, а следующие этажи пирамиды образованы последующими уровнями — консументами различных порядков.

    Рисунок 3.1. Пример пищевой сети.

    Азот в живой природе

    Роль азота в природе ещё не изучена до конца. Любая экологическая система усваивает небольшое количество вещества. Поэтому при производстве удобрений нарушается баланс между газом из органических соединений, вернувшимся в атмосферу, и элементами из воздушной среды.

    Было отмечено, что его состояние может переходить из техногенного потока в природный. Лишнее количество газа накапливается в природе и вызывает отрицательные последствия. Выявлена закономерная связь между сельским хозяйством, например, применением различных добавок, и загрязнением окружающей среды.

    Приблизительно 36% азота, который проникает в землю с удобрениями, просачивается в сточные воды. В них оказывается большое количество нитратов азота, которые, попадая в реки и озёра, вызывают усиленное размножение растений.

    Этот процесс получил название эвтрофикация, то есть загрязнение водных ресурсов водорослями. Это одно из самых важных экологических последствий в применении этого вещества. Молекулы служат питательной средой для водяных растений. Путём накапливания они разрастаются очень быстро, затемняют водоём и не дают развиваться другим растениям. Со временем водоросли отмирают. Для их разложения необходимо очень большое количество воздуха.

    Водный фонд становится бедным на наличие кислорода. Из неё уходят все возможные живые организмы, такие как ракообразные и рыба. Вода заболачиваются, превращаясь со временем в болото, и пересыхает.

    Ещё одной причиной загрязнения являются фермы. Есть три фактора:

  • Навоз оставляют на замёрзшей земле.
  • Избыточное количество химических веществ.
  • Не заделывают удобрения в почву.
  • При этом в воздух попадает аммиак. На расстоянии двух километров от ферм наблюдается его распространение и загрязнение воздуха. В результате близлежащие водоёмы оказываются загрязнены. Для предотвращения этого ниже по склону устраиваются пруды. А площадки откорма скота обязательно проектируются с учётом отметки грунтовых вод.

    Последствием нарушения баланса азота в атмосфере является увеличение количества нитратов в продуктах питания. В культурах, которые выращивают в сельском хозяйстве, могут содержаться большие дозы нитратного азота. Его образование возможно при неправильной транспортировке, а также при помощи бактерий.

    Окислы также входят в состав азотного соединения. Соединения образуются и оказываются в атмосфере путём сжигания газа, выделяются при использовании автомобиля или турбинных самолётов. Они не причиняют вреда только в том случае, если не окисляются озоном до двуокиси азота. Нахождение большой концентрации в организме приводит к тяжёлым заболеваниям.

    Для предотвращения чудовищных последствий этой проблемы необходимо тщательно изучать круговорот азота. Нужно найти способы соблюдения баланса между экосистемой и человеком. Можно заметить, что в современном мире при описании круговорота элементов возникают определённые затруднения, так как не все его процессы до конца изучены.

    Виды природных богатств

    Всё, что создала природа внутри земной коры — минералы, горные породы и т. д. — имеет свою классификацию. Если рассматривать деление по физическому состоянию, то это могут быть:

    • твёрдые вещества;
    • жидкости;
    • газы.

    Есть другой метод, предусматривающий анализ их использования. Согласно ему ископаемые бывают:

    • горючие;
    • рудные;
    • нерудные;
    • соли;
    • драгоценные и полудрагоценные камни.

    Ещё одной характеристикой является происхождение ископаемых. Они подразделяются на такие категории:

    • Магматические. Для них свойственно залегание в складчатых рельефах, так как подобные руды могут образоваться при выделении из быстро остывающей лавы. Во время тектонических сдвигов происходит смещение масс к нижнему краю платформы, образуя пласт породы. Преимущественно это рудные полезные ископаемые. Примером территории с запасом железных соединений может служить месторождение в Курской области, называемое магнитной аномалией, или украинский Криворожский бассейн.
    • К осадочным породам относятся нерудные элементы. Они появляются на берегах мелководных морей, а также в озёрных или болотистых местностях. Произошли из древних органических остатков, водорослей и сухопутных растений.
    • Метаморфические возникают при смещении земных платформ и физико-химических изменений внутри Земли. Основными представителями этой категории являются всевозможные сланцы.

    Имеется несколько методик добычи естественных богатств. От уровня залегания это могут быть:

    • Карьеры для извлечения горных залежей открытым способом — наиболее экономически целесообразный метод, но приводящий к изменению рельефа, что не всегда на пользу экосистеме.
    • Больших затрат потребует шахтный вариант.
    • Для нефти традиционным является фонтан, когда жидкость выходит наружу под давлением газов.
    • Особым способом — геотехнологическим — извлекают руду. Для этого в пласты породы закачивается горячая вода или спецраствор. Через скважины содержимое выходит на поверхность и ценная порода отделяется.

    Во всех странах отмечается повышение потребности в полезных ископаемых. Для того чтобы наиболее эффективно и полно использовать подобные исчерпаемые богатства, существует несколько правил:

    • Уменьшить потери при добыче.
    • Максимально извлекать сырьё на каждом месторождении.
    • Разработка новых экономичных способов извлечения.
    • Использование современной техники.
    • Привлечение учёных для поиска и прогнозирования будущих залежей.

    Годовые и ежемесячные изменения

    Изменение температурных показателей по месяцам называют годовым ходом температуры и характеризуют годовой амплитудой, т. е. разностью между средней температурой самого теплого месяца и самого холодного.

    Климат называется морским, если для него характерны небольшие годовые колебания температуры. Большая амплитуда определяет континентальный климат. Таким образом, климатические изменения происходят не только от экватора к полюсам, но и вдоль широт при удалении от берегов океанов вглубь материков.

    На годовой ход оказывают влияние широта и континентальное месторасположение географических зон. Увеличение высоты над уровнем моря приводит к уменьшению температурных колебаний за год. Определение средней многолетней амплитуды и времени наступления минимальной и максимальной температуры позволяет выделить четыре типа годового хода:

    • Экваториальный тип. Он характеризуется двумя слабовыраженными максимумами температурных значений — после весеннего и осеннего равноденствия, и двумя минимумами — после зимнего и летнего солнцестояния. Годовая амплитуда небольшая. Над океанами около градуса, над материками — до 10 °C.
    • Тропический тип. На широтах, относящихся к нему, преобладает простой годовой ход. Крайние значения приходятся на время летнего и зимнего солнцестояний. Амплитуда над побережьями порядка 5°, а внутри материков достигает 1—20 °C. Для муссонных областей характерен максимум перед летними муссонами, с приходом которых температура снижается.
    • Тип умеренного пояса. Максимально и минимально прогревается воздух в этих широтах примерно через месяц после солнцестояний. Для континентального климата характерны большие колебания в 25—40 °C, в Азии они могут доходить до 60 °C. Для морского составляют 10—15 °C. Включает в себя несколько подтипов — собственно умеренный, субтропический и субполярный.
    • Полярный тип. В Северном полушарии максимум температуры приходится на июль, в Южном — на январь. Минимум наступает перед появлением Солнца после полярной ночи. Имеет большой диапазон амплитуды даже над океанической поверхностью.

    Тема изменения температуры очень важна для определения метеорологических условий в каждой из географических зон земной поверхности. Температурная климатическая норма — это среднее значение, вычисленное за тридцатилетний период. При отслеживании погоды для наглядности применяются такие статистические величины, как отклонения от нормы или аномалии за сутки, месяц, сезон или год.

    Задачи дисциплин

    И прикладные, и фундаментальные науки служат человеку для решения его проблем и удовлетворения потребностей. То есть люди формируют свои задачи в виде социального заказа общества. Хотя на практике всё происходит несколько иначе.

    Прикладные науки не могут развиваться без фундаментальных, между ними возникает тесная, практически генетическая связь. И задачи первых обусловлены постоянным развитием вторых. А это значит, что они выполняют одни и те же функции:

    • открытие неизвестных фактов;
    • систематизация полученных знаний;
    • формулировка законов и открытий;
    • формирование теории.

    Хотя эти задачи выполняют оба вида дисциплин, прикладные преследуют другие цели. Они необходимы для разработки и использования в производстве новых технологий. А также с их помощью люди проектируют разные приспособления и устройства, исследуют влияние процессов на объекты и вещества. Расширение списка дисциплин будет продолжаться до тех пор, пока на планете существует человек и сама наука.

    Прикладные и фундаментальные задачи строятся вокруг общества и человека. Исследование обусловлено самим объектом, результаты напрямую зависят от него. Развитие дисциплин возможно на основе и практической составляющей, и теоретической. Первый вариант распространён больше, так как охватывает разные отрасли наук. А во втором другой фундамент — закономерности, обобщение, гипотезы и абстракции.

    Система прикладных знаний заключается в том, что для их получения используются особые конструкторы. Это абстрактные объекты, связанные теоретическими законами и направленные на изучение самой сущности процессов и явлений. В этом случае познание окружающего мира происходит с помощью философии, социологии, юриспруденции и экономики.

    Человек получает новые знания благодаря теоретическим основаниям, а затем применяет их на практике. Он сам заставляет науку развиваться и продвигается в изучении разных дисциплин всё дальше. Разделить все знания на несколько групп довольно сложно, ведь у некоторых из них есть общие признаки.

    Законы и теории

    Бытует мнение, что если учёные находят доказательства, поддерживающие гипотезу, последняя становится теорией, а в случае, когда теория верна, на её основании пишется закон. Это не совсем так. На самом деле факты, гипотезы, теории и законы — лишь отдельные инструменты научного метода.

    • Закон — это описание наблюдаемого явления. Он не объясняет, почему явление существует или что его вызывает.
    • Гипотезой называют ограниченное, предположительное объяснение феномена.
    • Теория представляет собой логическую, систематическую внятную трактовку явления и его причин.

    Кроме того, если какая-то закономерность становится законом, это не означает, что ситуация не изменится из-за будущих исследований. Использование определения закона у неспециалистов и учёных заметно отличается.

    Научные законы не абсолютны, они могут иметь исключения, способны быть опровергнуты или получить развитие с течением времени.

    Факты и законы работают на эмпирической, наблюдательной основе. Теории оперируют закономерностями на концептуальном уровне и зиждятся на логике, а не на наблюдениях. По аналогии с плохими и хорошими формальными объяснениями, теории также различаются по качеству. Наиболее важные критерии их оценки сводятся к следующему перечню:

    • Логическая непротиворечивость. Теоретические построения, граничные условия и допущения согласуются друг с другом.
    • Прогностическая сила. Насколько хорошо она предсказывает реальность.
    • Опровергаемость. Гарантия эмпирической проверяемости.
    • Экономичность. Объяснение сложного явления не должно быть за счёт неоправданного добавления новых конструкций.

    С учётом того факта, что теории и наблюдения являются двумя столпами естествознания, научные исследования, соответственно, ведутся на двух уровнях: теоретическом и эмпирическом. Первый касается разработки абстрактных понятий о явлении и соотношениях между этими понятиями.

    Значение круговорота n2 для биосферы

    Для того чтобы дать описание и схему круговорота азота в природе, нужно помнить, что этот элемент — важная часть белков и ДНК. Без него жизни, какой её знает человечество, могло и не быть. Но биологические существа способны усвоить его только в определённом виде.

    Таким образом, микроэлементы, являющиеся частью биологического организма, возвращаются в природу. В этом процессе частицы постоянно перемещаются между воздухом, водой и живыми организмами, в противном случае жизнь давно бы истратила свои ресурсы.

    N2 входит в состав всего живого. Это один из самых популярных в природе элементов. Атмосфера земли на 78% состоит из N2. Он также содержится в воде и почве и входит в состав белков.

    Этот элемент включается в синтез важнейших органических молекул, белков и нуклеиновых кислот. Азот в виде газа, содержащийся в атмосфере, довольно инертен и немногие организмы способны получать его из воздуха. Растения могут поглощать лишь связанный микроэлемент, то есть в составе химических соединений.

    Молекулярный азот — очень стойкое соединение. Для его разрушения необходимо большое количество энергии.

    Связывание или фиксация происходит тремя способами:

  • За счёт электрических разрядов молний. Они расщепляют молекулы, позволяя вступать в соединения с кислородом. Образованный таким способом оксид азота растворяется в дождевой воде и поступает в почву, откуда его поглощают растения. Именно вспышки молний играют важную роль в развитии жизни на нашей планете.
  • Человек — ещё один источник. Человеческая деятельность значительно увеличила его количество в природе. Сегодня треть этого связанного азота попадает в биосферу, благодаря широкому применению искусственных удобрений, содержащих нитраты. В промышленности связывание этого элемента с водородом происходит при температуре от 400 до 600 градусов по Цельсию и давлении до 1 тысячи атмосфер.
  • В природе основными азотфиксаторами являются бактерии, особенно те из них, которые образуют симбиоз с корнями бобовых растений. Горох, фасоль, соя, клевер — все они относятся к данному типу. Благодаря симбиозу, они могут жить на очень бедных почвах, обогащая их. У этих растений есть механизм, который позволяет им совместно с клубеньковыми бактериями усваивать вещество из воздуха.
  • Для того чтобы понять, какие организмы принимают участие в круговороте азота, надо вспомнить класс биологии. Существуют важнейшие азотфиксаторы цианобактерии. Они играют важную роль в водных экосистемах. N2 также свободно фиксируется свободноживущими почвенными бактериями.

    Большинство видов растений получает нитраты из почвы. Растительные белки становятся частью травоядных животных, а затем хищников. В круговороте бактерии играют важнейшую роль, разлагая сложные азотсодержащие соединения, чтобы их усвоили растения. В условиях недостатка кислорода некоторые бактерии разлагают органические вещества до получения газообразного азота. Он возвращается в атмосферу и весь цикл повторяется вновь.

    Историческая справка

    Начало формирования различных мировоззренческих картин началось с донаучных попыток объяснения мироустройства. Сюда относятся космогонические мифы о трёх слонах, стоя́щих на огромной черепахе, легенды о богах-прародителях, существующие у разных культур.

    • континуалистические;
    • математические;
    • атомистические.

    Несмотря на то что высказанные в древности гипотезы и теории имели множество недостатков, их основная мысль — о связи между всеми аспектами бытия, — сохранилась и до наших дней. С другой стороны, именно отсутствие исследований деталей естественной картины мира и могло стать причиной кризиса поздней античной науки.

    Следующим этапом в познании мира стало формирование механической картины, вдохновлённой как трудами мыслителей прошлых веков — Демокрита, Лукреция, Аристотеля, — так и вкладом ученых-современников — Коперника, Ньютона, Лапласа и Галилея. Основными её чертами стали следующие положения:

    • все тела состоят из молекул, хаотично и беспрерывно движущихся;
    • составные частицы материи неделимы;
    • всё пространство заполнено невидимой субстанцией, по свойствам приближающейся к жидкости, — эфиром;
    • все движения подчиняются законам механики Ньютона и сводятся к механическому перемещению, столкновению атомов и молекул;
    • законы механики распространяются и на процессы живой природы.

    В простом быту все принципы механической картины мира соблюдались и не противоречили практике.

    Но с развитием средств и методов измерений, позволявших «заглянуть» в космос, подтверждался диссонанс между моделью и реальностью. Например, в случае изучения движения небесных тел, необходимо было учитывать влияние сложных эффектов, связанных с перемещением частиц, чья скорость приближается к световой.

    В 19-ом веке накопленные знания были переосмыслены и заново проанализированы с помощью электромагнитной картины мира, основанной на исследованиях Фарадея, Герца и Максвелла. Было введено понятие физического поля, открыты электромагнитные волны (эфиру вместо жидкостной также придали электромагнитную сущность).

    Но к началу XX века вновь проявились недостатки теории и появилась необходимость в разработке новой картины мира.

    Сегодня основной концепцией является квантовая теория поля, в которой квантовое волновое поле является универсальной формой материи, проявляющей как корпускулярные, так и волновые характеристики. Её основоположниками стали Планк, Шрёдингер, Гейзенберг и многие другие. Ключевыми науками стали квантовые механика и электродинамика, объясняющие даже тонкие взаимодействия между частицами.

    Методы изучения

    Так как же была получена вся эта интересная информация о тайнах Вселенной? Учёные пользуются сразу несколькими методами изучения мироздания:

    • Оптический, с помощью телескопа. Устройство собирает свет — один из самых информативных источников сведений о космических процессах, и это позволяет наблюдать отдалённые объекты.
    • Спектральный анализ. В этом методе также используется телескоп, но на сей раз усовершенствованный спектрографом. Прибор разлагает спектр на составные части, расшифровав которые, можно получить данные о химическом составе объекта и скорости его движения, а также определить температуру источников излучения.
    • Космическое радиоизлучение. Для такого метода необходим телескоп, регистрирующий радиоволны. Их посылают объекты из самых удалённых областей Вселенной, а также ионизированный горячий газ и нейтральный водород межзвёздного пространства. По данным радиотелескопа делаются выводы о расстоянии до небесных тел и скорости их движения.
    • Нейтринная астрофизика. В рамках этого метода нейтринные телескопы регистрируют частицы малой энергии, рождающиеся во время термоядерных реакций, которые являются источником энергии Солнца. Вычисление величины потока нейтрино позволяет определять характер физических процессов, протекающих в недрах звезды.
    • Внеатмосферная астрономия. Её отличие от других методов заключается в том, что вся аппаратура выносится в межпланетное пространство. Это позволяет устранить атмосферные помехи в виде неоднородностей, вызывающих дрожание изображения в телескопе, и довести пространственное разрешение прибора до дифракционных значений.
    • Инфракрасная, ультрафиолетовая, рентгеновская и гамма-астрономия. Соответствующие телескопы устанавливаются на ракеты и спутники Земли, так как данные виды излучения поглощаются атмосферой планеты и зарегистрировать их на её поверхности не представляется возможным. С их помощью изучаются тусклые остывшие звёзды, экзопланеты, молекулярные облака, скопления галактик, чёрные дыры и другие объекты.

    Возможно, вскоре будут открыты и другие методы изучения Вселенной. Человечество узнает о ней что-то совсем необычное, и это навсегда перевернёт представления о мироздании.

    Но даже предположить трудно, чтобы когда-нибудь люди смогли полностью изучить космическое пространство. На его территории колоссальных размеров, кажется, всегда будет оставаться место для тайн.

    Модель разложения

    Большая масса флористических представителей широколиственных, хвойных и смешанных лесных полос не годится в пищу млекопитающим, поэтому отмирает в земле. Детрит образовывается в почве степи, водной толще и на дне таежных рек и озер. Маленькие частицы минерализованной органики, которая является останками мертвых животных и растений, входят в схему цепи питания, характерной для тайги.

    Мертвый материал временно выходит из природного оборота питательных элементов. Время отсутствия может составить короткий промежуток, т. к. тушки и отходы животных в теплом лесном климате перерабатываются за несколько суток, например, мушиными личинками.

    К длинным промежуткам отсутствия материала в пищевой цепи относится образование вековых залежей полезных ископаемых. Детрит представляет собой запасник питания в экологической системе и помогает сложиться нормальной модели биологического круговорота. В природе есть своеобразные организмы, которые перерабатывают детрит.

    Таежная зона дает такие разновидности детрита:

    • гумус;
    • лесная подстилка;
    • торф.

    Гумус представляет собой темноокрашенную органику, образующуюся посредством биологического химического разложения остатков флоры и фауны. Материал скапливается в верхнем слое почвы.

    Около 90% гумуса является гумусовыми материалами:

    • гумином;
    • гуминовой щелочной кислотой;
    • агрессивной фракцией растворимой гумусовой кислоты.

    Остальная часть органического почвенного вещества представлена мало разложившимися животными и растительными остатками. В гумусе содержится 50% углерода, а его объем зависит от процесса превращения праха организмов и стадии минерализации (аэробного разложения на органику и породообразующие вещества).

    Лесная подстилка является слоем детрита сверху почвы и появляется из слоя сброшенных листьев, упавших веток. Эта часть запасного питания является важной составляющей в структуре пищевой цепочки таежной экосистемы. В слое концентрируется большое количество разных форм детритофагов и редуцентов. Последний вид почти всегда представлен грибами.

    Предлагаем ознакомиться Чем питается сазан в природе

    Торфяной слой состоит из мало разложившихся останков растительности, которые скапливаются в экосистеме болота. Остатки травы и листьев хорошо видны под микроскопом. В разных болотных бассейнах формируются свои виды торфа, обогащенные характерной органикой и минералами.

    Отрасли и дисциплины

    Естествознание можно разделить на две большие группы: физические дисциплины и изучающие живые объекты. Их также можно классифицировать в зависимости от назначения. Так называемые чистые науки объясняют самые основные объекты и законы, их регулирующие.

    Прикладные применяют фундаментальные теоретические знания для узких практических целей. Например, медицина ставит своей задачей излечение человеческих недугов на основе биологии.

    Список естественных наук, которые считают основными, выглядит так:

    • Физика. Фокусируется на свойствах и взаимодействии материи, энергии, пространства и времени. В общем рассматривается как фундаментальная система знаний, тесно связанная с математикой и логикой. Формулирование теорий о законах, управляющих Вселенной, характерно для этого комплекса естественных знаний с древних времён.
    • Химия. В её интересы входит состав, структура и свойства веществ и изменение их результате реакций. Экспериментальная дисциплина, тесно связанная с остальной частью естествознания. Возникла из алхимии — сочетания эзотерики и физических экспериментов. Систематизация произошла после создания периодической таблицы и внедрения атомной теории вместе с разработкой исследователями фундаментального понимания форм материи.
    • Биология. занимается изучением живых существ, их происхождения, эволюции и особенностей. Имеет дело с характеристиками и классификацией организмов, взаимодействием видов друг с другом и окружающей средой. Такие разделы, как ботаника, зоология и медицина, появились с первыми цивилизациями. Микробиология берёт начало с XVII века вместе с открытием микроскопа. Ключевые события в развитии науки связаны также с появлением теорий эволюции, применением методов, характерных для физики и химии на клеточном и молекулярном уровне. Делится на разделы в зависимости от масштаба изучения: жизни от молекулярной до экологии.
    • География. Наука, описывающая происхождение, развитие и нынешнее состояние Земли. Объединяет комплекс методов познания о планете от картографии до метеопрогнозов. Включает в себя такие важные разделы, как океанография, геология, почвоведение, палеонтология. Хотя минералы и руды были предметами интереса на протяжении всей человеческой цивилизации, научное развитие знание о строении Земли приобрело лишь в XVIII веке.
    • Астрономия. Учение о небесных телах, их движении и явлениях, с ними связанных. Одна из самых древних дисциплин. Использует в качестве инструмента понимания процессов в небе физику и математические методы. Граничит с философскими вопросами о происхождении и будущем Вселенной. Ключевой фактор развития — появление и совершенствование телескопов.

    Многие достижения, определяющие современную цивилизацию, есть результат знаний и технологий, порождённых исследованиями в области естественных наук.

    Прогресс естествознания позволил человечеству победить неизлечимые в прошлом болезни, извлечь из недр Земли необходимые ресурсы, обеспечить население продуктами питания и совершить научно-техническую революцию.

    Плиз!! пищевая цепочка : сова, трава, мышь, уж, лягушка, кузнечик?? – школьные


    Контрольный срез по биологии за курс 7 класса . 2 вариант . Задания с выбором одного варианта ответа . 1.К консументам в пищевой сети относятся : А )


    бактерии Б ) грибы В ) растения Г ) животные 2. Выберите верное определение понятию « вторичная сукцессия » : А ) медленный процесс восстановления экосистемы , у которого была нарушена исходная природная структура ; Б ) формирование экосистемы в бесплодной среде , которая ранее не была обитаемой ; В ) группа животных впервые заселившая определенный ареал , Г ) экосистема леса 3. Короткий отросток нейрона : A ) дендрит Б ) аксон В ) нейроглий Г ) вставочный нейрон 4.Средний зародышевый листок : A ) энтодерма Б ) эктодерма В ) мезодерма Г ) цитоплазма 5. Биосинтез белка в клетке осуществляют органоиды : А ) рибосомы Б ) митохондрии В ) хлоропласты Г ) ядро 6.Микроэлемент , входящий в состав хлорофилла , обеспечивает фотосинтез : А ) калий Б ) азот B ) магний Г ) фосфор 7. Проводящая ткань растений по которой транспортируются вода и минеральные вещества : флоэма Б ) ксилема В ) нектарники Г ) смоляные канальцы 8. не относится к зонам корня , но выполняет важную защитную функцию : А ) роста Б ) деления В ) всасывания Г ) проведения Д ) корневой чехлик 9. Сердце четырехкамерное , состоит из 2 предсердий и 2 желудочков : А ) акула Б ) змея В ) медведь Г ) жаба 10. В процессе дыхания живые организмы выделяют : А ) азот Б ) кислород B ) углекислый газ Г ) водород Разноуровневые задания : Задания с выбором нескольких вариантов ответов 11.Выберите из предложенных вариантов биотические факторы : А ) хищник – жертва Б ) свет В ) лишайник- симбиоз гриба и водоросли Г ) вырубка лесов Д ) температура E ) опыление цветков пчелами 12. Выберите ткани , характерные для животных : А ) мышечная Б ) нервная В ) проводящая Г ) выделительная Д ) соединительная E ) основная 13. Известно , что углеводы- это главный источник энергии , необходимой для жизнедеятельности организма . Какие продукты богатые углеводами должен употреблять ребенок для нормального роста и развития организма : А ) сметана Г ) фрукты и овощи Б ) хлеб Д ) яйца мясо E ) кондитерские изделия 14. Выберите продукты , образующиеся в процессе фотосинтеза : А ) углекислый газ Б ) солнечный свет В ) кислород Г ) вода Д ) глюкоза​

    Плюсы и минусы

    Основным последствием парникового эффекта является изменение климата, выражающееся в увеличении влажности в атмосфере и возрастании её приповерхностной температуры.

    Если потепление климата при этом будет глобальным, вполне вероятны такие неприятные последствия:

    • таяние ледников и, как следствие, повышение уровня моря;
    • увеличение частоты возникновения экстремальных погодных явлений;
    • уменьшение разницы в температурах экватора и полюсов;
    • уменьшение количества дней в году, характеризующихся благоприятной погодой;
    • закисление океана растворённым углекислым газом;
    • внезапное высвобождение метана из отложений под морским дном и многолетней мерзлоты.

    Такие климатические изменения неизбежно приведут к смещению ареалов обитания биологических видов и даже вымиранию самых малочисленных из них.

    Не обойдётся при этом и без социальных последствий: повышение уровня моря грозит затоплением, упадками урожайности и вспышками голода в различных регионах. Также сильное повышение температуры окружающей среды вызывает развитие опасных заболеваний.

    Но и снижение концентрации парниковых газов, и в частности углекислого газа, также приводит к изменению климата. По одной из гипотез именно это явилось причиной возникновения ледниковых периодов. Поэтому наличие в атмосфере парниковых газов имеет и положительную сторону.

    Таким образом, сам по себе естественный парниковый эффект не несёт в себе ничего отрицательного для человечества. Если бы атмосфера не задерживала тепловое излучение, поверхность Земли имела бы температуру на уровне -18 градусов Цельсия. Благодаря эффекту эта температура составляет 15 градусов.

    Однако дальнейшее и неконтролируемое потепление (искусственный эффект) может иметь самые неприятные и даже катастрофические последствия, а значит, человек должен принимать все меры к тому, чтобы во время своей деятельности не допускать превышения разумного содержания газовых выбросов в атмосфере.

    Решением может быть переход на использование природного газа и альтернативных источников энергии солнца и ветра, а также восстановление лесов. Эти мероприятия провести непросто, но необходимо. Ведь бережное отношение человека к окружающей среде — основа нормальной жизни на планете.

    Средние значения и амплитуда температур

    Одна из характеристик климата географической точки — среднесуточная температура. Ее можно определить как среднее арифметическое от замеров, сделанных 4 раза за сутки:

    • в час ночи;
    • в семь часов утра;
    • в 13 часов;
    • в 19 часов.

    Среднегодовая температура является средним арифметическим от суммы температур всех месяцев года. Соответственно, среднемесячная определяется по сумме ежедневных данных за месяц, разделенной на число дней в месяце.

    Температурные колебания в каком-либо регионе характеризуются амплитудой температуры, т. е. разницей между самым высоким и самым низким значением, зафиксированным за определенный промежуток времени. Обычно говорят о суточной, месячной или годичной амплитуде.

    В России самые большие амплитуды имеют суточные температурные колебания, происходящие в ясную погоду весной и летом.

    Амплитуда колебаний зависит от многих факторов. Прежде всего — это температурные изменения на подстилающей поверхности, чем шире их диапазон, тем больше амплитуда температуры воздуха. Она зависит и от облачности: в ясную погоду колебания сильнее, чем в пасмурную.

    Суточная амплитуда неодинакова на разных формах рельефа земной поверхности. На склонах и вершинах холмов и гор она меньше, чем на равнинных территориях. Это объясняется тем, что у выпуклых рельефных форм площадь соприкосновения воздуха и подстилающей поверхности меньше, чем у плоских. Кроме того, на них воздушные массы быстро сменяются на новые.

    В оврагах и лощинах форма рельефа вогнутая. Здесь происходит более сильный нагрев воздуха от поверхности и застаивание его в дневные часы. Ночью большие массы холодного воздуха стекают по стенкам вниз. Поэтому в таких местах наблюдается повышенная амплитуда температуры. Но в очень узких ущельях, где приток солнечной радиации небольшой, этот показатель даже меньше, чем в широких долинах.

    На материковой широте 20—30° суточная амплитуда, взятая в среднем за год, составляет около двенадцати градусов Цельсия. На широте 60° — примерно 6 °C, а на широте 70° — всего 3 °C.

    Имеет значение и почвенный покров: в местности, где он густой и обширный, суточный разброс температур небольшой, а в сухом климате пустынь, полупустынь и степей может достигать 30 °C. Расположение климатической зоны вблизи морей и океанов уменьшает амплитуду.

    Тест для закрепления материала

    1. 1Кто такие автотрофы?

    2. 2К редуцентам относятся:

    3. 3Количество уровней пищевой цепи?

    4. 4Характерные особенности четвертого трофического уровня:

    5. 5Сколько энергии рассеивается в виде тепла при переходе на следующий трофический уровень?

    1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
    Загрузка...

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Adblock
    detector